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Abstract
Environmentally induced classical properties in quantum spin systems in the
thermodynamic limit are discussed. In particular, it is shown that such a
system, subjected to a specific interaction with another quantum system, may
be described for all practical purposes as a classical dynamical system. This
provides an alternative approach to the classical h̄ → 0 limit for the emergence
of reversible classical evolution from dissipative quantum dynamics.

PACS numbers: 03.65.Ta, 03.65.Yz

1. Introduction

In recent years, decoherence has been widely discussed and accepted as the mechanism
responsible for the appearance of classicality in quantum measurements and the absence, in
the real world, of Schrödinger-cat-like states [1–4]. The basic idea behind it is that classicality
is an emergent property induced in quantum open systems by their environment. It is marked
by the dynamical transition of a vast majority of pure states of the system to statistical
mixtures. In other words, decoherence is a process of a continuous interaction between the
system and its environment (sometimes called a continuous fuzzy measurement [5]), which
results in limiting the validity of the superposition principle in the Hilbert space of the system.
This resolves the measurement problem essentially in the following way: since any realistic
measuring apparatus is macroscopic, it necessarily interacts with its environment and so,
almost instantaneously after the measurement, the reduced state of the measuring instrument
is, for all practical purposes, indistinguishable from a state representing a classical probability
distribution over determined but unknown values of the measured observable. Information
required to exhibit quantum interference effects between distinct pointer states is immediately
lost in the external degrees of freedom.

In order to study decoherence, the analysis of the evolution of the reduced density matrices
obtained by tracing out the environmental variables is the most convenient strategy. For a
large class of physical phenomena, this evolution can be described by a dynamical semigroup,
whose generator is given by a Markovian master equation. The loss of quantum coherence
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in the Markovian regime was established in a number of open systems [6, 7] giving clear
evidence of environment-induced superselection rules. In a recent paper [8] a thorough
analysis of the superselection structure induced by a dynamical semigroup, which is also
contractive in the trace norm, was presented. It was achieved by the use of the isometric-
sweeping decomposition, which singles out a subalgebra,M1, of the algebra of all observables
whose elements are immune to the process of decoherence and so evolve in a unitary way
according to Schrödinger dynamics in the Heisenberg picture. Other observables decay in
time (in the appropriate topology) to elements in M1. It means that expectation values of
those observables, which are ‘orthogonal’ to the algebra M1, tend to zero when time goes to
infinity. Hence, after the so-called decoherence time, the existence of such observables cannot
be experimentally detected. Therefore, when decoherence happens almost instantaneously
then the subalgebra M1 represents effective observables of the quantum system [9]. It is
said that environmentally induced superselection rules appear, when the centre Z(M1) of the
algebra M1 is non-trivial. In a particular case, when decoherence affects all but a subset
of the so-called pointer states, the algebra of effective observables becomes commutative,
isomorphic to the algebra of bounded sequences l∞(�), where � is a finite or infinite discrete
set. And, as was shown in [9], this is the only possible Abelian subalgebra, which can be
induced by environmental decoherence. Because on the algebra l∞(�) there are no non-
trivial derivations so the evolution, when restricted to M1, must be trivial. Hence, the
above scheme, although fruitful in the discussion of quantum measurements and the absence
of Schrödinger-like-cat states, cannot be used for derivation of time continuous classical
dynamics.

However, it should be noted that those results concern only quantum systems with a finite
number of degrees of freedom, whose observables, due to the Stone–von Neumann uniqueness
theorem, form a factor algebra of type I. A new perspective is obtained when we pass to the
thermodynamic limit. Since in such a case the von Neumann algebra of observables is a
continuous factor [10] so it contains continuous Abelian subalgebras as well. In the case when
the algebra M1 of effective observables is indeed a continuous Abelian algebra L∞(�), the
evolution restricted to M1 induces a time continuous flow St on the configuration space �.
Hence, in such a case the quantum system can be thought of, for all practical purposes, as a
classical one whose evolution is given by a trajectory x→ Stx in �. More precisely, M1 is a
Hilbert space representation of some classical system and the group of automorphisms Tt |M1

represents a linear equation of motion of classical statistical mechanics, which is induced by
a ‘nonlinear’ equation of motion of classical point mechanics. This constitutes an alternative
approach (to the classical limit of Wigner functions [11]) for generating classical deterministic
dynamics from dissipative quantum systems. The main objective of this paper is to study
decoherence and its properties (in the Markovian approximation) on a matricial factor of type
II1 representing an infinite spin system. As a particular case we present a semigroup, for
which the algebra of effective observables is just the algebra of functions on a circle, and
whose evolution is induced by a rotation of the circle.

2. Spin system on a lattice

For infinite systems, it has been argued by Haag and Kastler [12] that the algebra of observables
A of the system has a quasi-local structure in the following sense. There exists a set F of
bounded regions � ⊂ R

3 such that
⋃

F � = R
3, for �1,�2 ∈ F there exists � ∈ F with

�1 ∪�2 ⊂ �, and for every� ∈ F there exists�′ ∈ F such that�∩�′ = ∅. Moreover, for
any� ∈ F there is a C∗-algebra A� with unit satisfying
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�1 ⊂ �2 ⇒ A�1 ⊂ A�2

�1 ∩�2 = ∅ ⇒ [A�1 ,A�2

] = 0⋃
�∈F

A� is norm dense in A.

Suppose now that our infinite system consists of spin- 1
2 particles located at each point of a

discrete lattice � ⊂ R
3. We assume that � is both countable and infinite. Let F denote the

set of all subsets � of � such that |�| < ∞, where |�| denotes the number of points in �.
Then, for any point x ∈ �, the algebra A{x} is just an algebra of 2 × 2 matrices, and so A� is
a full algebra of 2|�| × 2|�| matrices for any� ∈ F . The quasi-local algebra A is given by the
direct limit of A�,� ∈ F . In order to enter the standard description of quantum mechanics,
we take the GNS representation πω of A with respect to a faithful factor state ω on A [13]. In
this paper, we consider only those factor states ω such that M = πω(A)′′, the bicommutant
of πω(A), is a finite von Neumann algebra acting on the Hilbert space Hω. Clearly, M is a
factor of type II1 in this case. Typically, such states are of the form

ω(A) = Tr(e−βHA)
Tr(e−βH )

whereH = H ∗ ∈ A and Tr denotes a unique normalized trace on A. More generally, we may
take states which are quasi-equivalent to the tracial state Tr (a state ω1 is quasi-equivalent to
a state ω2 if every π1 normal state is π2 normal and vice versa, where π1 and π2 denote the
GNS representations associated with ω1 and ω2 respectively [13]).

The above description defines the kinematics of the quantum spin system. We next
consider its dynamics in the case when it interacts with an environment. Suppose that
environmental observables constitute an algebra B of operators acting on a Hilbert space HE .
The reduced dynamics ofπω(A) is given by the conditional expectation of the Schrödinger-type
dynamics (in the Heisenberg picture) of the joint algebra πω(A)⊗B, where the tensor product
is defined on the Hilbert space Hω ⊗ HE . However, it should be noted that in general the
unitary evolution of the joint system does not exist on the algebra πω(A)⊗B, but rather on its
weak closure [14]. Therefore, also the reduced dynamics may be properly defined only on the
von Neumann algebra M = πω(A)′′, which we call the algebra of (contextual) observables of
the system [15]. Clearly, it contains operators representing quasi-local observables and also
many others. In general, the reduced dynamics being the composition of a conditional
expectation with a unitary evolution is represented by a family of completely positive
superoperators on M. As was mentioned in the introduction, we restrict our considerations
to the Markovian regime, and so assume that the evolution of the algebra M is given by a
dynamical semigroup. By a quantum dynamical semigroup we mean a weakly∗ continuous
semigroup Tt , t � 0, of completely positive and normal maps on a von Neumann algebra M
such that for all t � 0, Tt is contractive in the operator norm and Tt (1) = 1, where 1 denotes
the identity operator in M [16]. With an additional assumption that Tt is also contractive in
the trace norm, we discuss in the next section environmentally induced decoherence in the
algebra M of the spin system.

3. Decoherence in the spin system

Since in this section we present mathematical results concerning the decomposition of M
with respect to the asymptotic properties of a dynamical semigroup Tt we keep the required
assumptions at a minimum. Because generalization to the continuous case is straightforward,
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we consider for simplicity a discrete semigroup T n, n ∈ {0, 1, 2, . . .}, generated by a single
operator T : M → M.

Suppose that M is a factor of type II1 (not necessarily matricial) acting in a separable
Hilbert space H. Let (H,M,D) be a gauge space, where D is the normalized dimension
function [17]. Let Tr be a trace on the algebra M with the property TrP = D(P) for any
projection P ∈ M. One can consider the sets L1(M) and L2(M) of all operators measurable
with respect to the algebra M, which are integrable and square-integrable respectively. The
following inclusions of the Banach spaces hold true,

M ⊂ L2(M) ⊂ L1(M)

and the corresponding norms satisfy ‖ · ‖∞ � ‖ · ‖2 � ‖ · ‖1. The subspace M is dense in
L2(M) and L1(M) in the appropriate norm. Moreover, one has M∗ = L1(M), where M∗
denotes the pre-dual space of the algebra M. The pairing between operators and states is
given by the bilinear form,

M × L1(M)  (x, ϕ) → Tr(xϕ) ∈ C

where by the same symbol Tr we denote the extension of the trace to the space L1(M). The
spaceL1(M) is provided with a continuous ∗-operation determined by the involution of M in
a unique way. More precisely, for any ϕ ∈ L1(M), the element ϕ∗ coincides with the ordinary
adjoint of ϕ in the Hilbert space H. It is clear that ‖ϕ∗‖1 = ‖ϕ‖1.

Suppose now that the operator T : M → M satisfies

(a) T is two-positive,
(b) T is contractive both in ‖ · ‖∞ and ‖ · ‖1-norm,
(c) T (1) = 1.

Then T may be extended to a contraction T on the space L1(M). The dual operator
T

∗
: M → M is also contractive in both ‖ · ‖∞ and ‖ · ‖1 norm. Therefore, it has the

extension T
∗

on L1(M). By interpolation, the restrictions of T and T
∗

to L2(M) are also
contractions. To simplify notation, we denote all these operators by T and T ∗, i.e.

T , T ∗ : M → M L1(M) → L1(M) L2(M) → L2(M).

Clearly T and T ∗ are Hermitian conjugate with respect to the scalar product in L2(M).
Moreover, T ∗ : M → M is two-positive and normal.

Proposition 1. T ∗(1) = 1 and so T is a trace preserving operator on M. Moreover, T is
normal.

Proof. ‖T ∗(1)‖2
2 � ‖1‖2

2. So ‖T ∗(1)− 1‖2
2 = ‖T ∗(1)‖2

2 − 2TrT ∗(1)1 + Tr1 = ‖T ∗(1)‖2
2 −

‖1‖2
2 � 0. Hence ‖T ∗(1)− 1‖2 = 0. It follows that for any x ∈ M,TrT x = Tr xT ∗(1) =

Tr x. Finally, by direct calculations, we check that for any A,B ∈ M the equality
Tr[A(T̄ ∗)∗B] = Tr[A(TB)] holds true. Since M is norm dense in M∗ so (T̄ ∗)∗ = T ,
and hence T is normal. �

Such bi-contractive operators on semifinite von Neumann algebras were studied by Yeadon
[18] and, in the case of arbitrary σ -finite von Neumann algebras, by Groh and Kümmerer [19].
For example, the extensions of operator T and its dual to all Lp(M) spaces were given in [18].
The mean ergodic properties of the semigroup of such operators were also discussed in those
papers.

Because T is a contraction on Hilbert space L2(M) so we may define a unitary subspace
K for T by

K = {x ∈ L2(M) : ‖T nx‖2 = ‖T ∗nx‖2 = ‖x‖2 for all n ∈ N}.
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Since x ∈ K iff T nT ∗nx = T ∗nT nx = x for any n ∈ N so K is a linear subspace in L2(M).
Both K and its orthogonal complementK⊥ are T and T ∗ invariant. Moreover, for x ∈ K⊥ we
have

w − lim
n→∞ T

nx = w − lim
n→∞T

∗nx = 0.

Proposition 2.

(a) If x ∈ K , then x∗ ∈ K ,
(b) If x = x∗ ∈ K , then |x|, x+, x− ∈ K ,
(c) 1 ∈ K .

Proof. Points (a) and (c) are clear. Suppose that x = x∗ ∈ K . Then −|x| � x � |x| and so
−T n|x| � T nx � T n|x|. Hence

‖T nx‖2 � ‖T n|x|‖2 � ‖|x|‖2 = ‖x‖2.

Because ‖x‖2 = ‖T nx‖2 so, for any n ∈ N, ‖|x|‖2 = ‖T n|x|‖2, and similarly for T ∗n. Thus
|x| ∈ K . Because 2x+ = |x| + x and 2x− = |x| − x so the proof is finished. �

Proposition 3. Suppose that x ∈ K and x � 0. Then E(B) ∈ K for any B ∈ B[0,∞),
where dE(λ) is a spectral measure for x, i.e. x = ∫∞

0 λ dE(λ), and B[0,∞) is the σ -algebra
of Borel subsets in [0,∞).

Proof. Suppose that n ∈ N. Let us define

An = 1
2 [n(x − a)+ + 1 − |n(x − a)+ − 1|]

where a > 0. Clearly, An ∈ K . However, (x − a)+ = ∫∞
a
(λ− a) dE(λ) and so

n(x − a)+ − 1 =
∫ ∞

a

n(λ− a) dE(λ)−
∫ a

0
dE(λ)−

∫ ∞

a

dE(λ)

where
∫ b
a

denotes
∫

[a,b). Therefore,

|n(x − a)+ − 1| =
∫ a

0
dE(λ) +

∫ ∞

a

|n(λ− a)− 1| dE(λ)

=
∫ a

0
dE(λ) +

∫ ∞

a+ 1
n

[n(λ− a)− 1] dE(λ)−
∫ a+ 1

n

a

[n(λ− a)− 1] dE(λ)

and so

2An =
∫ ∞

a

n(λ− a) dE(λ) +
∫ ∞

a

dE(λ)−
∫ ∞

a+ 1
n

[n(λ− a)− 1] dE(λ)

+
∫ a+ 1

n

a

[n(λ− a)− 1] dE(λ)

=
∫ a+ 1

n

a

n(λ− a) dE(λ) +
∫ ∞

a+ 1
n

n(λ− a) dE(λ) +
∫ ∞

a

dE(λ)

−
∫ ∞

a+ 1
n

n(λ− a) dE(λ) +
∫ ∞

a+ 1
n

dE(λ) +
∫ a+ 1

n

a

n(λ− a) dE(λ)−
∫ a+ 1

n

a

dE(λ).

Hence

An =
∫ a+ 1

n

a

n(λ− a) dE(λ) + E

([
a +

1

n
,∞

))
.
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Now we show that in L2(M)

lim
n→∞

∫ a+ 1
n

a

n(λ− a) dE(λ) = 0.

Indeed∥∥∥∥∥
∫ a+ 1

n

a

n(λ− a) dE(λ)

∥∥∥∥∥
2

2

= n2
∫ a+ 1

n

a

(λ− a)2 d TrE(λ)

� n2 1

n2
TrE

((
a, a +

1

n

))
= TrE

((
a, a +

1

n

))
.

Because d TrE(λ) is a probability measure so

lim
n→∞ TrE

((
a, a +

1

n

))
= 0.

In the same way, we show that E
([
a + 1

n
,∞)) → E((a,∞)) in L2(M). So limn→∞An =

E((a,∞)) ∈ K . Because 1 ∈ K so E([0, a]) ∈ K and, consequently, E((a, b)) ∈ K for any
0 � a < b. Suppose now that R is a family of subsets B ⊂ [0,∞) such that E(B) ∈ K .
Clearly, R is a σ -algebra containing all open intervals. Hence B[0,∞) ⊂ R. �

Remark. If x = x∗ ∈ K and x = ∫ +∞
−∞ λ dE(λ) then E(B) ∈ K for any B ∈ B(R), where

B(R) stands for the Borel σ -algebra.

Let P denote the orthogonal projection from L2(M) onto K. It is clear that (Px)∗ = P(x∗).

Proposition 4. Suppose that x ∈ M and x � 0. Then Px � 0 and ‖Px‖1 = ‖x‖1.

Proof. Because x � 0 so (Px)∗ = Px. Hence Px = ∫∞
−∞ λ dE(λ). Let P⊥ be orthogonal

projection ontoK⊥. Because for any B ∈ B(R), E(B) ∈ K so

TrE(B)P⊥x = 0 = TrE(B)(x − Px) = TrE(B)x − Tr
∫
B

λ dE(λ).

Hence Tr
∫
B
λ dE(λ) = ∫

B
λ d TrE(λ) � 0 which implies that E((−∞, 0)) = 0. Thus

Px � 0. Moreover, since 1 ∈ K so Tr 1P⊥x = 0. Hence Tr x = TrPx. �

Corollary 5. P extends to a bounded projection on L1(M). Its dual P ∗ is a bounded and
positive projection on M.

Proposition 6. P ∗ = P |M.

Proof. For A ∈ M and x ∈ L2(M) we have

TrP ∗(A∗)x = TrA∗Px = 〈A,Px〉L2 = 〈PA, x〉L2 = Tr (P (A))∗x = TrP(A∗)x.

Because L2(M) is dense in L1(M) so P ∗(A∗) = P(A∗) for any A ∈ M and thus P ∗ = P

on M. �

Let us define M1 = M ∩K and M2 = M ∩K⊥. Then M1 and M2 are Banach subspaces
of M and M = M1 ⊕ M2. Moreover, T = T1 ⊕ T2, where T1 = T |M1 and T2 = T |M2 .

Theorem 7. M1 is a von Neumann algebra. T |M1 is a trace preserving ∗-automorphism

of the algebra M1 with
(
T |M1

)−1 = T ∗|M1 . On the other hand, for any A ∈ M2 and all
ϕ ∈ L1(M) we have

lim
n→∞ Tr T n(A)ϕ = 0.
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Proof. First we prove that if A,B ∈ M1, then also A ·B ∈ M1. Clearly, it suffices to
consider only Hermitian A and B. But then

2A · B = (A + B)2 − A2 − B2 + i[(A− iB)∗ · (A− iB)− A2 − B2].

Hence it is enough to check that if x ∈ M1, then x∗x ∈ M1. Since both T and T ∗ are
two-positive so, by the Schwarz inequality,

T ∗nT n(x∗x) � (T ∗nT nx)∗T ∗nT nx = x∗x.

Hence ‖x∗x‖2 � ‖T ∗nT n(x∗x)‖2 � ‖x∗x‖2, and so x∗x ∈ K . However, x∗x ∈ M so
x∗x ∈ M1. Thus M1 is an ∗-algebra containing the identity operator. Suppose now that
Aα → A in the σ -weak topology. Because both T and T ∗ are normal so

T ∗nT n(A) = lim
α
T ∗nT n(Aα) = lim

α
Aα = A

and similarly for T nT ∗n. Hence A ∈ M1 and so M1 is a von Neumann algebra.
Next, we prove properties of the restriction of the operator T to the algebra M1. Because,

by proposition 1, T is trace preserving so it suffices to check only that T (xy) = T (x)T (y) for
any x, y ∈ M1. Because T satisfies the Schwarz inequality (T x)∗T x � T (x∗x), so for any
x ∈ M1,

Tr[T (x∗x)− (T x)∗T x] = ‖x‖2
2 − ‖T x‖2

2 = 0.

Hence (T x)∗T x = T (x∗x) since the state Tr is faithful. Let us define a positive sesquilinear
form

bϕ = ϕ[T (x∗y)− (T x)∗Ty]

where ϕ is a positive normal state on M. Then bϕ(x, x) = 0 implies that bϕ(x, y) = 0 for
any y ∈ M1. Since ϕ was arbitrary so T (x∗y) = T (x∗)T (y) for any x, y ∈ M1. Because for
any x ∈ M1, T

∗T (x) = T T ∗x = x so T is invertible with
(
T |M1

)−1 = T ∗|M1 . Hence T |M1

is an ∗-automorphism of the algebra M1.
To prove the last statement of this theorem, suppose that ϕ ∈ L2(M). Because A ∈ K⊥

so the assertion follows from the definition. Because L2(M) is dense in L1(M) in the trace
norm so for ϕ ∈ L1(M) and any ε > 0 we may find x ∈ L2(M) such that ‖ϕ − x‖1 < ε.
Then

|TrT n(A)ϕ| � |TrT n(A)(ϕ − x)| + |TrT n(A)x| � ε‖A‖ + |TrT n(A)x|
and so limn→∞|TrT n(A)ϕ| � ε‖A‖. Since ε was arbitrary, the proof is finished. �

Clearly M1 = RangeP |M. The algebra M1 will be called the subalgebra of effective
observables or simply effective subalgebra. Next, we describe properties of the projection
P |M, which we also denote by P.

Theorem 8. P : M → M is a completely positive normal norm-1 projection. Moreover,
‖P‖1,1 = 1.

Proof. At first, we show that P is completely positive. Suppose that x̃ ∈ M ⊗ Mn×n,
where Mn×n is the algebra of n × n matrices, and x̃ � 0. Then (P ⊗ id)(x̃) is Hermitian
and so (P ⊗ id)(x̃) = ∫

λ dE(λ). Let Trn denote the normalized trace on Mn×n. Because
(P ⊗ id)(x̃) ∈ M1 ⊗Mn×n so E(B) ∈ M1 ⊗Mn×n for any B ∈ B(R). Therefore,

(Tr ⊗ Trn)[E(B)(P
⊥ ⊗ id)(x̃)] = 0 = (Tr ⊗ Trn)[E(B)(x̃ − (P ⊗ id)(x̃))]

which implies that

(Tr ⊗ Trn)[E(B)(P ⊗ id)(x̃)] � 0
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and so

(Tr ⊗ Trn)
∫
B

λ dE(λ) =
∫
B

λ d(Tr ⊗ Trn)E(λ) � 0.

Putting B = (−∞, 0) we obtain that E((−∞, 0)) = 0 and so (P ⊗ id)(x̃) is positive. Hence,
by definition, P is completely positive. Because P(1) = 1 hence P satisfies the Schwarz
inequality and so ‖P‖∞,∞ = 1. Thus, by duality, ‖P‖1,1 = 1. Because P coincides with the
dual operator to a projector P : L1(M) → L1(M) so P is normal. �

Corollary 9. P : M → M1 is a Tr-compatible σ -weakly continuous conditional expectation
onto the algebra M1.

Let us now determine what type of algebra M1 can be. The following theorem shows that
there are no limits in this matter.

Theorem 10. For any von Neumann subalgebra N ⊂ M with identity, there is an operator
T on M, which satisfies assumptions (a)–(c) and whose effective subalgebra M1 coincides
with N .

Proof. Let E be a Tr-compatibile σ -weakly continuous conditional expectation from M
onto N . Because 1 ∈ N so E(1) = 1. Suppose that T (x) = ax + (1 − a)E(x), where x ∈ M
and a ∈ (0, 1). Then, by definition, T is normal and T (1) = 1. Moreover, ‖T (x)‖∞ � ‖x‖∞.
On the other hand,

‖E(x)‖1 = sup
‖y‖∞=1

|Tr yE(x)|.

Let � denote the unit vector in the Hilbert space L2(M) determined by the identity
operator 1. If Q : L2(M) → L2(M) is the orthogonal projection onto N�, then for
any x ∈ M there is Q(x�) = E(x)�. Hence

Tr yE(x) = 〈y∗�,E(x)�〉L2 = 〈y∗�,Q(x�)〉L2

= 〈Q(y∗�), x�〉L2 = 〈E(y∗)�, x�〉L2 = TrE(y)x

and so

‖E(x)‖1 = sup
‖y‖∞=1

|TrE(y)x| � sup
‖y‖∞=1

‖E(y)‖∞‖x‖1 = ‖x‖1.

Therefore, condition (b) is satisfied. Next, we show that T is completely positive. Let Mn×n
denote the algebra of n× n matrices and let Trn be the normalized trace on it. Let eij , i, j ∈
{1, 2, . . . , n} be a standard basis in Mn×n. Suppose now that x̃ ∈ M ⊗Mn×n. Then, for any
ỹ ∈ N ⊗Mn×n there is

Tr ⊗ Trn(E ⊗ id(x̃)ỹ) = Tr ⊗ Trn


∑
i,j,k

E(xik)ykjeij




= 1

n

∑
ij

TrE(xik)ykj = 1

n

∑
ij

Tr xikyki = Tr ⊗ Trn(x̃ỹ).

Hence, if x̃ � 0, then E ⊗ id(x̃) � 0 too, and so condition (a) follows. Finally, we determine
the effective subalgebra M1 for the operator T. Let T : L1(M) → L1(M) be the extension
of T and T

∗
: M → M the dual operator. We show that T = T

∗
. Indeed, for any x, y ∈ M

there is

Tr[T
∗
(x)y] = Tr[xT (y)] = Tr[x(ay + (1 − a)E(y))] = Tr[T (x)y].
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Because M is dense in L1(M) so T
∗
(x) = T (x) for all x ∈ M. Therefore, the property

T ∗nT nx = T nT ∗nx = x for all n ∈ N

simplifies to T 2(x) = x. However, T 2(x) = a2x + (1 − a2)E(x) and the equation T 2(x) = x

holds true only when x = E(x). Therefore, M1 = N . �

Suppose now that the subalgebra M1 is a maximal Abelian subalgebra in M. By the
representation theorem [20], it is isomorphic to the algebra L∞([0, 1],B, dx), L∞ in short,
whereB denotes theσ -algebra of Borel subsets of interval [0, 1]. By theorem 7,T : L∞ → L∞

is an automorphism such that∫ 1

0
(Tf )(x) dx =

∫ 1

0
f (x) dx

for any f ∈ L∞. Because ([0, 1],B, dx) is a Lebesgue space so there is a bijective map
S : [0, 1] → [0, 1] such that both S and S−1 are measurable and measure preserving, and
T (χA) = χS−1(A) where χA denotes the characteristic function of a Borel set A. Thus the
following theorem holds true.

Theorem 11. The action of the group (T |L∞)k, k is an integer, is induced by a discrete time
trajectory x → Skx, x ∈ [0, 1], that is (T kf )(x) = f (Skx) for any f ∈ L∞.

In this way, we enter the area of measure spaces representing classical systems and their
reversible evolution.

4. Example and concluding remarks

The main result of the previous section may be formulated as follows. Suppose that the
evolution of an infinite quantum spin system interacting with its environment is given by
a dynamical semigroup Tt , t � 0, which is also contractive in the trace norm. Then a
von Neumann algebra M of observables of the system decomposes onto a von Neumann
subalgebra M1 and a Banach subspace M2, which are both Tt -invariant. The evolution
restricted to the algebra M1 is given by a one parameter group of ∗-automorphisms, while all
expectation values (with respect to all statistical states of the system) of any operator belonging
to M2 vanish when t → ∞. More precisely, for any normal state φ ∈ M∗ and any A ∈ M2

there is

lim
t→∞ Tr(TtA)φ = 0.

Since every x ∈ M may be written as x = x1 +x2, where x1 ∈ M1, x2 ∈ M2, in a unique way,
we may conclude that only operators from the algebra M1 are available for measurements
for arbitrary long times. This justifies the name of algebra of effective observables, at
least in the case when decoherence happens almost instantaneously. Let us comment on
the decomposition M = M1 ⊕ M2 (called the isometric-sweeping decomposition) which
is obviously related to the asymptotic properties of the semigroup T n. Such properties for
positive or completely positive semigroups having a faithful normal stationary state (or a
faithful family of subinvariant normal states) have been extensively studied by many authors.
For example, in [21] and [22] the problem of the approach to equilibrium was addressed.
In [18, 19, 23–26] the existence of the mean ergodic projection on a von Neumann algebra
M was considered. Such a projection being a conditional expectation onto the fixed point
subalgebra MT provides another decomposition, namely M = MT ⊕ N with the obvious
inclusion MT ⊂ M1. However, the evolution restricted to MT is trivial, while on M1 it is
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given by a group of automorphisms. Moreover, the restriction of the dynamics to N cannot
be controlled in general. For a partial result in this direction see [27]. From this point of view,
the isometric-sweeping decomposition is closer to the so-called Jacobs–deLeeuw–Glicksberg
splitting which holds whenever the semigroup is relatively compact in the weak operator
topology, see for example [28]. Since, by proposition 1, trace is a stationary state for T n so
the pre-dual semigroup T n∗ is relatively compact in the weak operator topology on L(M∗).
Hence, there exists a projection P in L(M∗) onto the so-called reversible part of M∗. Its
dual P ∗ provides another decomposition of M, say M = Mr ⊕ M0, with a possibly non-
trivial evolution on its reversible part. However, again Mr ⊂ M1 and M2 ⊂ M0. Thus
the decomposition presented in section 3 seems to be the most optimal with respect to the
process of decoherence which selects the algebra of effective observables. It is also worth
noting that the isometric-sweeping decomposition exists also on type I factors, even when the
Jacobs–deLeeuw–Glicksberg splitting fails to hold true [8].

In the case when decoherence affects all but a maximal subset of mutually compatible
observables, then M1 becomes a maximal Abelian subalgebra ofM. Generalizing theorem 11
to the continuous case, we obtain that evolution of the algebra M1 is induced by a flow on the
interval [0, 1], i.e. a measurable map S : R × [0, 1] → [0, 1], such that (Ttf )(a) = f (Sta)

for any f ∈ L∞. Hence, the map a → Sta is nothing other than a trajectory of a classical
system represented in the Hilbert space L2([0, 1],B, da) by the algebra L∞. In this section,
we present an example of the reduced dynamics of the quantum spin system for which the
effective subalgebra becomes commutative, and whose evolution is (up to isomorphism) given
by a uniform rotation of a circle.

Example. The model is the following. The quantum system is a semi-infinite linear array of
spin- 1

2 particles, fixed at positions k ∈ N. The quasi-local algebra A is the norm closure of the
algebra A0 = ⋃An of local observables. Here by An we denote the 2n × 2n matrix algebra
associated with the set �n = {1, 2, . . . , n}. On the algebra A there is a unique normalized
tracial state ω = Tr. Let M = πω(A)′′, where πω is the corresponding GNS representation.
Clearly, M is a type II1 factor acting in the Hilbert space Hω = L2(M). Suppose now that
our system is open and interacts with its environment. Then, the reduced dynamics (in the
Markovian approximation) of the algebra M is given by a master equation

ẋ = L(x) = i[H, x] + L0(x)

where δ = i[H, ·] is a closed derivation generating a σ -weakly continuous one parameter
group of ∗-automorphisms of M, and L0 represents the dissipative part of the generator L.
Such a decomposition of the evolution generator onto the Hamiltonian and dissipative parts is
widely used in physical models, see for example [29], where this issue together with a number
of limiting procedures leading to such Markovian master equations is discussed. Dynamical
semigroups with such a form of their generators for infinite fermion systems have also been
studied by Davies [30]. Let us now describe these operators explicitly.

4.1. Construction of L0

Suppose that D is a subalgebra in A generated by the identity operator 1 and the Pauli matrices
σ 3
k , k ∈ N. Clearly, D is a maximal Abelian subalgebra in A [31]. By the Gelfand theorem, it

is isomorphic to a C∗-algebra of continuous functions on a compact space. It is easy to note
that D = C(C), where C is the Cantor set with appropriate topology. Let us recall that any
φ ∈ C is represented by a sequence (i1, i2, . . .), in ∈ {0, 2} for all n ∈ N, i.e. φ = ∑

n
in
3n .

Points of the Cantor set correspond to pure states of the algebra D, i.e. if φ = (i1, i2, . . .) ∈ C
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and f ∈ D, then

φ(f ) = lim
n→∞ Tr

(
Pi1...inf

)
where Pi1···in = Pi1 ⊗ · · · ⊗ Pin and Pik are minimal, complementary projections in D ∩ A{k}.
Clearly, Pi1···in are minimal in D ∩ An. The Cantor set is homeomorphic with �∞; an infinite
product (with the product topology) of a two-point space � = {0, 1}. Suppose that µ0 is a
probability measure on � such that µ0({0}) = µ0({1}) = 1

2 , and let µ∞
0 be the tensor product

of this measure. By µ we denote the regular Borel measure on the Cantor set induced by the
homeomorphism C → �∞. Then, for any f ∈ D, Tr f = ∫

f (x) dµ(x), where by the same
symbol f we denote an element in D and the corresponding function in C(C). Therefore,
πω(D)

′′ = L∞(C, dµ) ⊂ M. Suppose that

f0(φ) =
∞∑
n=1

(−1)in/2

2n

where φ = (i1, i2, . . .) ∈ C. Then f0 ∈ D and so πω(f0) ∈ M. To derive an explicit
formula for L0 we use the so-called projection technique. Let the environment of the system
consist of a single quantum particle located on a real line (in general, an environment is also
an infinite quantum system but this simplified situation is sufficient for our purpose). Hence
HE = L2(R, ds) and ME = B(HE), the algebra of all bounded operators on HE . Such a joint
system (a semi-infinite linear array of spin- 1

2 particles plus a moving quantum particle),
although without tracing out the particle variables, was discussed by Bell [32] in connection
with the reduction of the wavefunction problem. On the joint algebra M ⊗ ME we consider
a unitary evolution determined by an interacting Hamiltonian

H̃ = πω(f0)⊗ p̂ = πω

( ∞∑
k=1

(
1

2

)k
σ 3
k

)
⊗ p̂

where p̂ is the momentum operator in HE . The reduced dynamics of the algebra M is given
by the composition of the unitary dynamics of the joint system and the conditional expectation,
i.e. a norm-1 and normal projection, with respect to a reference state ωE of the environment,
�ωE : M ⊗ ME → M. Suppose that ωE = |ψ〉〈ψ|, where

ψ(s) = 1√
2π

∫ ∞

−∞

eips dp√
π(1 + p2)

.

The evolution of any x ∈ M is given by

T 0
t (x) = �ωE(eitH̃ (x ⊗ 1E) e−itH̃ ).

Theorem 12. T 0
t is a quantum dynamical semigroup on M, which is also contractive in the

trace norm. Its generator L0 is a bounded operator on M.

Proof. See the appendix. �

4.2. Construction of δ

Suppose thatDn = D ∩An, i.e.Dn is isomorphic to the algebra of 2n × 2n diagonal matrices.
Suppose that Un consists of all unitary operators U contained in An such that U∗DnU = Dn.
Clearly, Un is a group and the inclusion Un ⊂ Un+1 holds true. Let U

(
1
2n
) ∈ Un be defined by

the following property,

U

(
1

2n

)∗
dU

(
1

2n

)
= (d2n2n , d11, d22, . . .)
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where d = (d11, . . . , d2n2n ). Clearly, it generates a cyclic group Z2n of rank 2n. Because
Z2n ⊂ Z2n+1 so Z∞ = ⋃

n Z2n is an Abelian group of unitary operators in A. It is isomorphic
to the group of dyadic numbers

D =
{
k

2n
: n ∈ N, 0 � k � 2n − 1

}

with addition modulo 1. More precisely, if d ∈ D, i.e. d = k
2n , then U(d) = U

(
1
2n
)k

.
It implies that the map d ∈ α(d), where α(d)(x) = U(d)∗xU(d), x ∈ M, is a group
homomorphism into the group of inner automorphisms of M. Let Aut(M) denote the group
of ∗-automorphisms of the algebra M.

Theorem 13. There is a σ -weakly continuous group homomorphism α : t ∈ R → Aut(M),
such that α(m) = id for any integer m, and for any d ∈ D, α(d) = U(d)∗ · U(d). Moreover,
α(t) is spatial, i.e. α(t) = U(t) · U(t)∗ where U(t) is a strongly continuous group of unitary
operators in Hω.

Proof. See the appendix. �

Suppose that δ is the generator of α(t). Clearly, δ = i[H, ·], where H is a self-adjoint operator
in the Hilbert space Hω, the generator of the group U(t). It is worth pointing out that δ is not
inner since H is not affiliated to M. Because L0 is bounded so the operator L = δ + L0 with
D(L) = D(δ) generates a σ -weakly continuous semigroup Tt which satisfies the conditions
(a)–(c) from section 3. Next, we determine the subalgebra of effective observables M1 for the
semigroup Tt .

4.3. Description of the subalgebra M1

Theorem 14. M1 = πω(D)
′′ = L∞(C, dµ).

Proof. See the appendix. �

Let us now describe the action of the semigroup Tt restricted to the subalgebra M1. First, we
do it for dyadic numbers. Elements of the group Z∞ induce the following homeomorphisms

of the Cantor set. If d ∈ D, then U(d) = U
(

1
2n
)k

and γ (d) : C → C is given by
γ (d) = γ

(
1
2n
) ◦ · · · ◦ γ ( 1

2n
)
, where

γ

(
1

2n

)
(i1, i2, . . .) = (i1, i2, . . .) +̂ (0, 0, . . . , 2, 0, . . .) (i1, i2, . . .) ∈ C.

Number 2 appears in the nth position, and the sum +̂ is defined as follows:

(2, 2, . . . , 2, in+1, . . .) +̂ (0, 0, . . . , 2, 0, . . .) = (0, 0, . . . , 0, in+1, . . .).

If there exist ij1 < · · · < ijk , jk � n, equal to zero, then ijk → 2, il → 0 for jk < l � n,
and the other indices remain unchanged. It is worth noting that points of the Cantor set
(i1, i2, . . .), ij ∈ {0, 2} correspond to all possible configurations of the position (up and down)
of the third component of spin particles of the system. The action of γ (d) changes such a
configuration in the way described above. Suppose that S1 = {eia, a ∈ R} and let λ : C → S1

be given by

λ(i1, i2, . . .) = exp

(
2π i

∞∑
n=1

in

2n+1

)
.
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Clearly, the map λ : C → S1 is continuous and onto. Moreover, it induces an isomorphism of
the following algebras λ̂ :L∞(S1, da)→L∞(C, dµ), λ(f )(i1, i2, . . .)=f (λ(i1, i2, . . .)),
f ∈L∞(S1, da), where da denotes the normalized Lebesgue measure on the Borel σ -algebra
of the circle S1. It is easy to check that the automorphism α̂(t) = λ̂−1α(t)λ̂ for t ∈ D is unitary
and given by the following formula (α̂(t)f )(eia) = f (ei(a+2πt)), where f ∈ L∞(S1, da). By
continuity and periodicity, this formula holds true for arbitrary t ∈ R. Hence α̂(t) is a group
of automorphisms of the algebra L∞(S1, da), which is induced by a continuous flow on the
underlying configuration space eia → ei(a+2πt), i.e. a uniform rotation of the circle. Clearly,
the presented example is formal. In a more realistic situation, one would have to consider the
coupling of the infinite spin system with another infinite quantum system such as, for example,
a phonon field at a positive temperature. Since temperature representations of boson fields
are known to be factors of type III, such a generalization of the spin-boson model to infinite
number of spin particles is technically much more involved and it is still under consideration.

4.4. Concluding remarks

The problem of the transition from microscopic to macroscopic worlds is a fundamental one in
the discussion of interpretation of quantum mechanics. In particular, the emergence of classical
dynamics described by differential, and hence local, equations of motion from the evolution
of delocalized quantum states is at the centre of this issue. It is believed that environmentally
induced decoherence, which destroys the majority of quantum superpositions, is responsible
for emergence of classical properties in quantum systems. Such effects should be the most
transparent in quantum systems consisting of many particles [33]. In the above example, we
showed that it is possible, at least on the mathematical level, to force the infinite open quantum
spin system to obey classical dynamics. In other words, the effective observables of the system
may be parametrized by a single collective variable (representing possible configurations of
the third component of spins) with periodic evolution. It should be pointed out, however, that
this analysis does not solve the problem of transition from a quantum to a classical description
of Nature. We believe that the main achievement of decoherence lies not in deriving the laws
of classical physics from quantum theory but in demonstrating that in specific circumstances,
introduced by approximations and guesses, quantum systems may be effectively described as
classical ones, even those with non-trivial dynamical features.
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Appendix

Proof of theorem 12. To prove the first statement, one has to check only the semigroup
property T 0

t T
0
s = T 0

t+s, t, s � 0. Because T 0
t is normal and contractive in the operator norm

so it is enough to show that T 0
t T

0
s (πω(A)) = T 0

t+s(πω(A)) for all local operators A. Let us
define a sequence of step functions,

fn(φ) = fn(i1, . . . , in) =
n∑
k=1

(−1)ik/2

2k
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where φ ∈ C. It is clear that fn ∈ D ∩ An, and that fn → f0 in the sup norm. Hence
eitH̃ n → eitH̃ in the strong operator topology, where H̃ n = πω(fn)⊗ p̂. First, we show that

eitH̃ (πω(A)⊗ 1E) e−itH̃ = eitH̃ n (πω(A)⊗ 1E) e−itH̃ n

for any A ∈ An. Since

fn =
∑
i1,···,in

fn(i1, . . . , in)Pi1···in

where Pi1···in are minimal projections in D ∩ An so, for any k ∈ N,

eitH̃ n+k (πω(A)⊗ 1E) e−itH̃ n+k =
∑

i1,...,in+k

j1,...,jn+k

πω
(
Pi1···in+kAPj1···jn+k

)⊗ eit (fn+k(i1,...,in+k )−fn+k(j1,...,jn+k))p̂

=
∑
i1,...,in
j1,...,jn

πω
(
Pi1···inAPji ···jn

)⊗ eit (fn(i1,...,in)−fn(j1,...,jn))p̂

= eitH̃ n (πω(A)⊗ 1E) e−itH̃ n .

Because

lim
k→∞

eitH̃ n+k (πω(A)⊗ 1E) e−itH̃ n+k = eitH̃ (πω(A)⊗ 1E) e−itH̃

in the strong operator topology so the required property follows. Using the above formula, we
may calculate T 0

t (πω(A)) for any local operator A. Since A ∈ A0 so there exists n ∈ N such
that A ∈ An. Thus

T 0
t (πω(A)) = �ωE


 ∑

i1,...,in
j1,...,jn

πω
(
Pi1···inAPj1···jn

)⊗ eit (fn(i1,...,in)−fn(j1,...,jn))p̂




=
∑
i1,...,in
j1,...,jn

πω
(
Pi1 ···inAPj1···jn

) 〈ψ, eit (fn(i1,...,in)−fn(j1,...,jn))p̂ψ〉.

However, for any t � 0,

〈ψ, eit (fn(i1,...,in)−fn(j1,...,jn))p̂ψ〉 = 1

π

∫ ∞

−∞
eit (fn(i1,...,in)−fn(j1,...,jn))p

dp

1 + p2

= e−t|fn(i1,...,in)−fn(j1,...,jn)|.

Hence

T 0
t (πω(A)) =

∑
i1,...,in
j1,...,jn

e−t|fn(i1,...,in)−fn(j1,...,jn)|πω
(
Pi1···inAPj1···jn

)

and so the semigroup property follows by direct calculations. Let L0 denote the generator
of this semigroup. If A ∈ An, then L0(πω(A)) = πω(Ln ◦ A), where ◦ is the Hadamard
(entrywise) product and Ln is a 2n × 2n matrix whose coefficients are given by the following
formula:

(Ln)i1···in,j1···jn = −|fn(i1, . . . , in)− fn(j1, . . . , jn)|.
Finally, we show that L0 is a bounded operator on M. To this end, we need a lemma.

Lemma. Ln : A → A, Ln(A) = Ln ◦ A, is bounded with ‖Ln‖ � 4.
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Proof of the lemma. Suppose that B is a 2n × 2n matrix. By KB we denote the
‖ · ‖∞,∞ norm of the operator B acting on the algebra M2n×2n as A → B ◦ A, i.e. KB =
sup{‖B ◦ A‖∞ : ‖A‖∞ = 1}. Because

Ln = − 1

2n−1




0 1 . . . 2n − 1
1 0 . . . 2n − 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2n − 1 2n − 2 . . . 0




so Ln = L+
n + L−

n , where L+
n(L

−
n ) denotes respectively the upper triangular (lower triangular)

part of the matrix Ln. Suppose that

(Rn)ij =
{

0 i � j

1 i > j
(Sn)ij =

{
0 i > j

1 i � j

where i, j ∈ {1, 2, . . . , 2n}. Then S∗
nRn = 2n−1L−

n . Since

KB = min{(c(S)c(R) : S∗R = B}
see, for example, [34] for notation, so

2n−1KL−
n

� c(Sn)c(Rn) �
√

2n
√

2n − 1 � 2n

what implies that KL−
n

� 2. In the same way we may show that KL+
n

� 2. Hence KLn � 4,
which ends the proof of the lemma. �

Because T 0
t is normal so there exists a strongly continuous semigroup T 0

t∗ on M∗ such
that T 0

t = (
T 0
t∗
)∗

. Let L0∗ be its generator. Since T 0
t∗ and T 0

t coincide on πω(A0) so
πω(A0) ⊂ D(L0∗) and L0∗(πω(A)) = L0(πω(A)) forA ∈ A0. Moreover, since the matrix Ln
is symmetric and ω = Tr so

‖L0∗(πω(A))‖1 = ‖πω(Ln ◦ A)‖1 = ‖Ln ◦ A‖1 � KLn‖A‖1 � 4‖πω(A)‖1

for any A ∈ A0. Hence L0∗ is bounded on a norm dense subset in M∗. However, L0∗ is
closed. Thus it is bounded on M∗ and so L0 is bounded on M. �

Proof of theorem 13. First, we show the following lemma.

Lemma. For any A,B,C ∈ A0 there exists a continuous function f AB,C : [0, 1] → C such
that f AB,C(0) = f AB,C(1) and

f AB,C(d) = 〈πω(B)�, α(d)(πω(A))πω(C)�〉
for all d ∈ D.

Proof. Because � is a trace vector so we may assume that C = 1. For d ∈ D we put

f AB,1(d) = 〈πω(B)�, α(d)(πω(A))�〉.
Suppose now that t ∈ [0, 1]\D. Let us define a non-decreasing sequence of dyadic numbers
dk by induction,

d1 =
{

0 t � 1
2

1
2 t > 1

2

dk+1 =
{
dk t � dk + 1

2k+1

dk + 1
2k+1 t > dk + 1

2k+1

.

Clearly, dk < t and dk → t . First, we show that
(
f AB,1(dk)

)
is a Cauchy sequence. Because

A,B ∈ A0 so there exists m ∈ N such that A,B ∈ Am. For arbitrary k, l ∈ N there is

dm+k = nm

2m
+

1

2m
nk

2k
dm+k+l = nm

2m
+

1

2m
nk

2k
+

1

2m+k

nl

2l
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where nm ∈ {0, 1, . . . , 2m − 1} and so on. Since α
(
nm
2m
)
A ∈ Am so

α
(nm

2m

)
A =

2m∑
i,j

aijE
(m)
i,j

where
{
E
(m)
i,j

}
, i, j ∈ {1, 2, . . . , 2m}, form the standard (linear) basis in Am. Finally, we define

two local operators

� =
2m∑
i,j

λijE
(m)
i,j

where λij = a(i−1)(j−1) − aij (a0j = a2mj , ai0 = ai2m, a00 = a2m2m), and

Fij =
2lnk+nl∑
p=2lnk+1

E
(m+k+l)
2k+l (i−1)+p,2k+l (j−1)+p

if nl � 1. For nl = 0 we put Fij = 0. Then

α(dm+k+l)A− α(dm+k)A =
2m∑
i,j

λijFij

and so

Trπω(B)
∗[πω(α(dm+k+l)A)− πω(α(dm+k)A)] = nl

2k+l
Trπω(B)

∗πω(�).

Because nl < 2l so∣∣f AB,1(dm+k+l)− f AB,1(dm+k)
∣∣ � 2−k‖B‖∞ · ‖�‖∞.

However, ‖�‖∞ depends only on α
(
nm
2m
)
A ∈ Am, which implies that

(
f AB,1(dk)

)
is a Cauchy

sequence. Hence we may define

f AB,1(t) = lim
k→∞

f AB,1(dk).

It is easy to check that if d ′
k is an arbitrary sequence of dyadic numbers such that d ′

k < t and
d ′
k → t , then

lim
k→∞

f AB,1(d
′
k) = lim

k→∞
f AB,1(dk).

Therefore, f AB,1(t) is well defined for all t ∈ [0, 1]. Since for any d ∈ D\{0} there is

lim
k→∞

f AB,1(dk) = f AB,1(d)

if dk < d, dk → d so, by definition, the function f AB,1 is left-continuous. In order to show the

right continuity of f AB,1 it is sufficient to check that f BA,1(1 − t) = f AB,1(t) or, equivalently, that
for t ∈ (0, 1),

lim
k→∞

f AB,1(dk) = lim
k→∞

f BA,1(d
′
k)

where dk < t , dk → t , and d ′
k < 1 − t, d ′

k → 1 − t . Suppose that ε > 0. Because∣∣∣f BA,1(d ′
k)− f AB,1(dk)

∣∣∣ � ‖A‖∞
(

2f BB,1(1)− f BB,1(bk)− f BB,1(bk)
)

= 2‖A‖∞ Re
(
f BB,1(1)− f BB,1(bk)

)
where bk = dk + d ′

k, so, by the left continuity of f BB,1 in point 1,
∣∣f BA,1(d ′

k) − f AB,1(dk)
∣∣ < ε

for large k ∈ N. Hence f BA,1(1 − t) = f AB,1(t) and so f AB,1 is continuous on the interval
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(0, 1), left-continuous in point 1, and right-continuous in point 0, which ends the proof
of the lemma. �

Suppose now that dn ∈ D and dn → t ∈ [0, 1]. Because for any � ∈ Hω and ε > 0 there
exists B ∈ A0 such that ‖πω(B)�‖2 � ‖�‖2 and ‖� − πω(B)�‖2 < ε so

|〈�, (α(dn)− α(dm))(πω(A))�〉| � 2ε‖A‖∞(‖�‖2 + ‖πω(B)�‖2) + |〈πω(B)�, (α(dn)
−α(dm))(πω(A))πω(B)�〉| � 4ε‖A‖∞‖�‖2 +

∣∣f AB,B(dn)− f AB,B(dm)
∣∣ .

Hence, by the polarization formula, α(dn)(πω(A)) converges weakly to some operator, say
α(t)(πω(A)) ∈ M. In particular, the function f Ax,y : [0, 1] → C, A ∈ A0, x, y ∈ M, is well
defined and continuous. If x ∈ M, x � 0, and B,C ∈ A0, then

〈πω(B)�, (α(dn)− α(dm))(x)πω(C)�〉 = f CB
∗

x1/2,x1/2(1 − dn)− f CB
∗

x1/2,x1/2(1 − dm).

Hence, by linearity, α(dn)(x) converges weakly in M for all x ∈ M. Its limit we denote by
α(t)(x). Because

‖α(t)(x)�‖2
2 = 〈�,α(t)(x∗x)�〉 = lim

n→∞〈�,α(dn)(x∗x)�〉 � ‖x‖2
∞‖�‖2

2

hence ‖α(t)(x)‖∞ � ‖x‖∞ for all t ∈ [0, 1]. It is also clear that if dn → 1, then α(dn)(x)
tends weakly to x. Thus for any t ∈ [0, 1] the map α(t) : M → M is well defined, linear,
preserving the ∗-operation, and such that α(0) = α(1) = id. It is easy to check that for any
d ∈ D and t ∈ [0, 1] there exists

α((t + d)mod 1) = α(t) ◦ α(d) = α(d) ◦ α(t)
and, in consequence, α((t1 + t2)mod 1) = α(t1) ◦ α(t2) for all t1, t2 ∈ [0, 1]. Moreover, since
‖α(t)(x)‖∞ � ‖x‖∞ so for any x ∈ M, t → α(t)(x) is σ -weakly continuous. Using the
property α(0) = α(1) = id we extend it to a periodic and σ -weakly continuous map defined
for all real numbers. Because α(t)(1) = 1 for all t ∈ R so, by corollary 3.2.13 in [13], α(t)
is an ∗-automorphism. Finally, we show that α(t) is spatial. Let � = 1 be the cyclic and
separating vector in Hω. For any x ∈ M we define Ut(x�) = (α(t)x)� . Since Ut is densely
defined and bounded we extend it onto the whole Hω. Because

Trα(t)x = lim
n→∞ Tr α(dn)x = Tr x

so Ut is a one parameter group of unitary operators. It is also clear that Ut� = U∗
t � = � .

Hence, for all x, y ∈ M,

UtxU
∗
t y� = Ut(xα(−t)(y)�) = (α(t)x)y�

and so UtxU∗
t = α(t)x. �

Proof of theorem 14. From construction of the operator L0 we infer that πω(D)′′ ⊂ kerL0.
Since etδ : πω(D)′′ → πω(D)

′′ so, by the Trotter product formula, πω(D)′′ ⊂ M1. Suppose
now that x ∈ kerL0 and x /∈ πω(D)′′, i.e.P(x) �= x, whereP : M → πω(D)

′′ is a conditional
expectation onto the maximal Abelian subalgebra πω(D)′′ [31]. Let y = x − P(x). Then
y ∈ M1 and y �= 0. We may assume that ‖y‖2 = 1. Let us take a sequence (An),An ∈ An,
such that πω(An) → x in L2(M). Then Bn = πω(An)− P(πω(An)) ∈ πω(An) and Bn → y.
Hence, there exists n0 ∈ N such that

∥∥y − Bn0

∥∥
2 <

1
4 . Because

∥∥etL0Bn0

∥∥
2 → 0, when

t → ∞, so there exists t0 > 0 such that
∥∥et0L0Bn0

∥∥
2 <

1
4 . Thus

1 = ‖et0L0y‖2 �
∥∥et0L0

(
y − Bn0

)∥∥
2 +

∥∥et0L0Bn0

∥∥
2 <

1
2

the contradiction. Therefore, kerL0 = πω(D)
′′. Finally, we show that M1 ⊂ kerL0.

By definition, L = δ + L0 with D(L) = D(δ) and L∗ = −δ + L0 with D(L∗) = D(δ),
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are generators of Tt : M → M and T ∗
t : M → M respectively. Because the closure

L + L∗ = 2L0 is a generator of a contractive semigroup so, by the Trotter formula,

e2tL0 = lim
n→∞(Tt/nT

∗
t/n)

nx

for all x ∈ M. For x ∈ M1 we have TtT ∗
t x = x for all t � 0, and hence x ∈ kerL0. �
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